Recent LHCb spectroscopy results
T. Ovsiannikova for the seminar at PNPI
11.05.2021

Exotic charmonium-like states in beauty decays

- Plethora conventional and exotic charmonium states observed in b-decays
- Charmonium-like states, beyond the $q \bar{q}$ and $q q q$ scheme
- Multiquark states are predicted by Gell-Mann and Zweig in 1964
- Theoretical explanation: molecules, hybrids, tetraquarks, etc
- First observed state - X(3872) in 2003

$\chi_{c 1}(3872)$ state

What've we already know:

- Narrow $\Gamma_{\text {LHCb }} \sim 1.13 \mathrm{MeV}$ (Breit - Wigner width)
- $\mathrm{m}_{\chi_{\mathrm{cl}}(3872)}$ close to $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ threshold ($3871.59 \pm 0.06 \pm 0.01 \mathrm{MeV} / \mathrm{c}^{2}$)
- $\delta \mathrm{E}_{\mathrm{LHCb}}=0.07 \pm 0.12 \mathrm{MeV}$
- $\mathrm{J}^{\mathrm{PC}}=1^{++}$(PDG 2019)

First observation by Belle in 2003
Chanel: $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+}$ Signal: 35.7 ± 6.8 events

PRL 91 (2003) 262001

Latest results

Chanel: $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+}$
Signal: 4230 ± 70 events
JHEP 08 (2020) 123
$\mathrm{LHCb} \mathrm{B}^{+} \rightarrow \chi_{\mathrm{cl}}(3872) \mathrm{K}^{+}$
LHCb b $\rightarrow \chi_{\mathrm{cl} 1}(3872) \mathrm{X}$
Belle
BES III
BaBar
BaBar

First observation of the non-zero width

$\chi_{c 1}(3872)$ state

Still unclear nature:
PRL 125 (2020) 152001

$$
\frac{\mathrm{Br}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{cl}}(3872) \phi\right)}{\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \chi_{\mathrm{cl}}(3872) \mathrm{K}^{+}\right)} \sim \frac{1}{2} \frac{\operatorname{Br}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \phi\right)}{\mathrm{Br}\left(\mathrm{~B}^{+} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}^{+}\right)}
$$

Could be a compact tetraquark?
The tetraquark (diquark-based) scenario Maiani et al: PRD 129 (2020) 034017
PRD 102 (2020) 092005

Could be a molecule disintegrated at high multiplicity? No rigorous theoretical treatment

PRD 102 (2020) 092005

The BR comparison with conventional charmonium could help understood production mechanism

- First observation in J/ $\psi \phi$ spectrum by CDF (2009):
- Above $\mathrm{D}_{\mathrm{s}}^{*+} \mathrm{D}_{\mathrm{s}}^{*-}$ threshold
- $M=4143.4 \pm 3.0 \pm 0.6 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=15.3_{-6.1}^{+10.4} \pm 2.5 \mathrm{MeV}$
- Hint of a second structure $-X(4247)$
- Above $\mathrm{D}_{\mathrm{s} 0}^{+} \mathrm{D}_{\mathrm{s}}^{-}$threshold
- Not confined by LHCb with $0.37 \mathrm{fb}^{-1}$
- X(4140) confirmed by CMS and D0 (2014):

- CMS X(4140) (>5
- $M=4148.4 \pm 2.4 \pm 6.3 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=28_{-11}^{+15} \pm 19 \mathrm{MeV}$
- CMS X(4247-)X(4351) (>3 $)$
- $M=4313.8 \pm 5.3 \pm 7.3 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=38_{-15}^{+30} \pm 16 \mathrm{MeV}$
- Also confirmed by CDF with large statistic:

MPLA 32-26 (2017) 1750139

PLB 734 (2014) 261

Exotic states in $\mathrm{J} / \psi \phi$ spectrum

- Observation of four resonances at LHCb using Run 1 data PRD 95 (2017) 012002

Contri- bution	sign. or Ref.	$M_{0}[\mathrm{MeV}]$	$\Gamma_{0}[\mathrm{MeV}]$
$\overline{\text { All }} \bar{X}\left(1^{+}\right)$			
$X(4140)$	8.4σ	$4146.5 \pm 4.5_{-2.8}^{+4.6}$	$83 \pm 21_{-14}^{+21}$
ave.	Table 1	$4147.1 \pm 2.4^{+17.2}$	15.7 ± 6.3
$X(4274)$	6.0σ	$4273.3 \pm 8.3_{-3.6}^{+11_{-11}^{+}}$	$56 \pm 1.2^{+22} \pm 8$
CDF	$[29]$	$4274.4_{-6.7}^{+8.4} \pm 1.9$	$32_{-15}^{+22} \pm 8$
CMS	$[25]$	$4313.8 \pm 5.3 \pm 7.3$	$38_{-15}^{+30} \pm 16$
All $X\left(0^{+}\right)$			
$\mathrm{NR}_{J / \psi \phi}$	6.4σ		
$X(4500)$	6.1σ	$4506 \pm 11_{-15}^{+12}$	$92 \pm 21_{-20}^{+21}$
$X(4700)$	5.6σ	$4704 \pm 10_{-24}^{+14}$	$120 \pm 31_{-33}^{+42}$

- The measured width of $X(4140)$ is larger that value obtained from other experiments

$\chi_{c 1}(4140)$ WIDTH				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
22 ± 8 OUR	RAGE	Error includes sca	factor of 1.3	See the ideogram below.
$\begin{array}{cc}83 & \pm 21 \begin{array}{c}+21 \\ -14\end{array}\end{array}$	4289	${ }^{1} \mathrm{AAIJ}$	17C LHCB	$B^{+} \rightarrow J / \psi \phi K^{+}$
$15.3_{-6.1}^{+10.4} \pm 2.5$	19	${ }^{2}$ AALTONEN	17 CDF	$B^{+} \rightarrow J / \psi \phi K^{+}$
$16.3 \pm 5.6 \pm 11.4$	616	3 ABAZOV	15M D0	$p \bar{p} \rightarrow J / \psi \phi+$ anything
$20 \pm 13+3$	52	4 ABAZOV		$B^{+} \rightarrow J / \psi \phi K^{+}$
$28{ }_{-11}^{+15} \pm 19$	0.3k	5^{5} CHATRCHYA	14 M CMS	$B^{+} \rightarrow J / \psi \phi K^{+}$

- - We do not use the following data for averages, fits, limits, etc.

Observation of new resonances decaying to $\mathrm{J} / \psi \mathrm{K}^{+}$and $\mathrm{J} / \psi \phi$

The amplitude analysis of $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}^{+}$

arXiv:2103.01803

- Use full statistic of Run 1+2
- $24200 \pm 170 \mathrm{~B}^{+}$candidates
- Low background $\sim 4 \%$ (a factor of 6 smaller)
- Signal is in 6 times larger than in previous analysis

Possible contribution $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}, \mathrm{~B}^{+} \rightarrow \mathrm{XK}^{+}$

PRD 95 (2017) 012002

Clear structures $\ln \mathrm{J} / \psi \phi$

The amplitude analysis of $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}^{+}$

Hint to the presence of $\mathrm{B}^{+} \rightarrow \mathrm{Z}_{\mathrm{cs}} \phi$ contribution

- Components for each decays described by 6 parameters:
- Mass $m_{\phi K}$, helicity angles θ, angles between two decay chains $\Delta \phi$
- $\Omega=\left(\theta_{K^{*}}, \theta_{J / \psi}, \theta_{\phi}, \Delta \phi_{K^{*}, J / \psi}, \Delta \phi_{K^{*}, \phi}\right)$
- Other invariant masses in the chain depend of $m_{\phi K}$ and Ω
- First fit with model from previous analysis

$$
\begin{aligned}
& -\ln L(\vec{\omega})=-\sum_{i} \ln \left[(1-\beta) \mathcal{P}_{\mathrm{sig}}\left(m_{\phi K}{ }_{i}, \Omega_{i} \mid \vec{\omega}\right)+\beta \mathcal{P}_{\mathrm{bkg}}\left(m_{\phi K} i, \Omega_{i}\right)\right] \quad \text { determinated from } \\
& =-\sum_{i} \ln \left[(1-\beta) \frac{\left|\mathcal{M}\left(m_{\phi K}{ }_{i}, \Omega_{i} \mid \vec{\omega}\right)\right|^{2} \Phi\left(m_{\phi K}{ }_{i}\right) \epsilon\left(m_{\phi K}{ }_{i}, \stackrel{\left.\Omega_{i}\right)}{I(\vec{\omega})}+\beta \frac{\mathcal{P}_{\mathrm{bkg}}^{u}\left(m_{\phi K}{ }_{i}, \Omega_{i}\right)}{I_{\mathrm{bkg}}}\right]}{}\right. \\
& =-\sum_{i} \ln \left[\left|\mathcal{M}\left(m_{\phi K} i_{i}, \Omega_{i} \mid \vec{\omega}\right)\right|^{2}+\frac{\beta I(\vec{\omega})}{(1-\beta) I_{\mathrm{bkg}}} \frac{\mathcal{P}_{\mathrm{bkg}}^{u}\left(m_{\phi K} i, \Omega_{i}\right)}{\Phi\left(m_{\phi K} i_{i}\right) \epsilon\left(m_{\phi K} i, \Omega_{i}\right)}\right]+N \ln I(\vec{\omega})+\text { const., } \\
& \text { Fraction of comb. bkg., } \\
& \text { determinate from fit to } \mathrm{m}_{\mathrm{J} / \psi \phi \mathrm{K}} \text { phase space function }
\end{aligned}
$$

6D matrix element, resonance lineshapes - RBW with Blatt-Waiskopff barrier-factor

Results with Run 1 model

- The fitting was optimized using Run1 data
- The fit cannot describe properly $\mathrm{m}_{\mathrm{J} / \mu \mathrm{K}^{+}}$and $\mathrm{m}_{\mathrm{J} / \psi \phi}$
- Improvement of K^{*} model: (include tails of $K^{*}(1410), K(1400), K_{1}(1400)$ and poles below $\phi \mathrm{K}^{+}$threshold)

New resonances in $\mathrm{J} / \psi \mathrm{K}^{+}$or $\mathrm{J} / \psi \phi$?

- The expansion of K^{*} model by including new predicted resonance in $\phi \mathrm{K}^{+}$spectrum doesn't improve data description
- Test new exotic states (X and Z_{cs}) of different J^{P}
- Well described data
- The final nominal model contains

$$
9 \mathrm{~K}^{*}+7 \mathrm{X}+1 \mathrm{X}(\mathrm{NR})+2 \mathrm{Z}_{\mathrm{cs}}
$$

Contribution	Significance $[\times \sigma]$	$M_{0}[\mathrm{MeV}]$	$\Gamma_{0}[\mathrm{MeV}]$	FF [\%]
$X\left(2^{-}\right)$				
$X(4150)$	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28_{-30}^{+59}$	$2.0 \pm 0.5_{-1.0}^{+0.8}$
$X\left(1^{-}\right)$				
$X(4630)$	5.5 (5.7)	$4626 \pm 16_{-110}^{+18}$	$174 \pm 27_{-}^{+134}$	$2.6 \pm 0.5_{-1.5}^{+2.9}$
All $X\left(0^{+}\right)$				$20 \pm 5{ }_{-7}^{+14}$
$X(4500)$	20 (20)	$4474 \pm 3 \pm 3$	$77 \pm 6_{-8}^{+10}$	$5.6 \pm 0.7_{-0.6}^{+2.4}$
X (4700)	17 (18)	$4694 \pm 4_{-}^{+16}$	$87 \pm 8_{-6}^{+16}$	$8.9 \pm 1.2_{-1.4}^{+4.9}$
$\mathrm{NR}_{J / \psi \phi}$	4.8 (5.7)			$28 \pm 8_{-11}^{+19}$
All $X\left(1^{+}\right)$				$26 \pm 3_{-10}^{+8}$
$X(4140)$	13 (16)	$4118 \pm 11_{-36}^{+19}$	$162 \pm 21{ }_{-49}^{+24}$	$17 \pm 3_{-6}^{+19}$
$X(4274)$	18 (18)	$4294 \pm 4_{-6}^{+3}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5_{-0.4}^{+0.8}$
$X(4685)$	15 (15)	$4684 \pm 7_{-16}^{+13}$	$126 \pm 15_{-41}^{+37}$	$7.2 \pm 1.0_{-2.0}^{+4.0}$
All $Z_{c s}\left(1^{+}\right)$				$25 \pm 5_{-12}^{+11}$
$Z_{\text {cs }}(4000)$	15 (16)	$4003 \pm{ }^{+}{ }_{-14}^{4}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$
$Z_{\text {cs }}(4220)$	5.9 (8.4)	$4216 \pm 24_{-30}^{+43}$	$233 \pm 52_{-73}^{+97}$	$10 \pm 4{ }_{-}^{+10}$

- Two new $\mathrm{Z}_{\mathrm{cs}}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}$and several $\mathrm{X} \rightarrow \mathrm{J} / \psi \phi$ are observed with significance more 5σ
- Results of Run 1 data are confirmed with large significance

hypothesis and dominated systematics

- The different hypothesis for J^{P} of observed resonance are testes:
- J^{P} confirmed for previous reported states with high significance
- 1^{+}favored for $X(4685)$ and $Z_{c s}(4000)^{+}$
- $X(4150)$ and $X(4630)$ are not very determined, 1^{-}and 2^{-}is preferred for $X(4630)$ (3 σ) and 2^{-}is preferred for $\mathrm{X}(4150)(4 \sigma)$
- 1^{-}and 1^{+}cannot be distinguished for $Z_{c s}(4220)^{+}$
- Various alternative models are investigated for systematics studies:
- Simplified K-matrix for K^{*}, Flatte for X and Z states etc...
- The difference between 1^{-}and 1^{+}for $Z_{c s}(4220)^{+}$state assigned as systematics and gives major contribution for the $Z_{c s}(4000)^{+}$parameters

All $Z_{c s}\left(1^{+}\right)$			$25 \pm 5_{-12}^{+11}$	
$Z_{c s}(4000)$	$15(16)$	$4003 \pm 6_{-14}^{+4}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$
$Z_{c s}(4220)$	$5.9(8.4)$	$4216 \pm 24_{-30}^{+43}$	$233 \pm 52_{-73}^{+97}$	$10 \pm 4_{-7}^{+10}$

hypothesis

The difference between the preferred one and the alternative hypothesis

$$
(\sigma \sim \sqrt{\Delta(-2 \ln L)})
$$

$\boldsymbol{J}^{\mathrm{P}}$	0^{+}	0^{-}	1^{+}	1^{-}	2^{+}	2^{-}
$\boldsymbol{X}(\mathbf{4 6 3 0})$	6.7σ	5.3σ	5.8σ	prefer	5.9σ	3.0σ
$X(4500)$	prefer	18σ				
$X(4700)$	prefer	18σ	18σ	18σ	14σ	17σ
$X(4140)$	14σ	15σ	prefer	14σ	13σ	14σ
$X(4274)$	18σ	18σ	prefer	18σ	18σ	18σ
$\boldsymbol{X}(\mathbf{4 6 8 5})$	16σ	16σ	prefer	15σ	16σ	15σ
$\boldsymbol{Z}_{\boldsymbol{c s}}(\mathbf{4 0 0 0})$	-	17σ	prefer	17σ	15σ	16σ
$\boldsymbol{Z}_{\boldsymbol{c s}}(\mathbf{4 2 2 0})$	-	8.6σ	prefer	2.4σ	4.9σ	5.7σ

$\mathrm{Z}_{\text {cc }}(4000)^{+}$state

- Argand plot from independent fitting shows resonance character of $Z_{c s}(4000)^{+}$
- Including of this state significantly improves fit quality
- Fit with fixed to BESII's results of $\mathrm{Z}_{\mathrm{cs}}(3985)^{-}$state for $Z_{c s}(4000)^{+}$parameters shows worse loglikelihood w.r.t nominal model
arXiv:2011.07855

$$
\begin{aligned}
m_{\mathrm{pole}}\left[Z_{c s}(3985)^{-}\right] & =\left(3982.5_{-2.6}^{+1.8} \pm 2.1\right) \mathrm{MeV} / c^{2} \\
\Gamma_{\text {pole }}\left[Z_{c s}(3985)^{-}\right] & =\left(12.8_{-4.4}^{+5.3} \pm 3.0\right) \mathrm{MeV}
\end{aligned}
$$

Z_{cs} states interpretation

Several theoretical interpretation already appeared:

- $\operatorname{Are} \mathrm{Z}_{\mathrm{cs}}(4000)^{+}$and $\mathrm{Z}_{\mathrm{cs}}(3985)^{+}$tetraquarks?

- $D \bar{D}_{s}^{*}$ molecules?

arXiv: 2103.08586

- Threshold cups?
- Coupled channel model, are $\mathrm{Z}_{\mathrm{cs}}(4000)^{+}$ and $\mathrm{Z}_{\mathrm{cs}}(3985)^{+}$states same?

arXiv: 2103.5282
- Etc....

Prospect of observed states investigation

- Expect a significant increase in data after upgrade (7x in 2029) :
- The J^{p} for $Z_{c s}^{+}(4220)$ could be determined with large data sample
- As well as J^{p} for other new X states
- Make a solid conclusion about the same nature of $Z_{c s}^{+}(4000)$ and $Z_{c s}^{-}(3985)$
- Search for same resonance decays in other channels:
- In $\mathrm{B}_{\mathrm{s}}^{0}$ decays the $J / \psi \phi$ spectrum could be probed up to approximately $300 \mathrm{MeV} / \mathrm{c}^{2}$

Study of the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$decays

- Use full statistic of Run 1+2
- $26500 \pm 200 \mathrm{~B}_{\mathrm{s}}^{0}$ candidates
- A lot of possible contributions due to 5 particles in final state
- Clear visible signals after the background suppressions

$$
\psi(2 S), \chi_{c 1}(3872), K^{* 0}(892), \phi \ldots
$$

- The signal yields are obtained from the simultaneous fit to three dimensional distribution of $J / \psi \pi \pi^{+} \pi^{-} K^{+} K^{-}, K^{+} K^{-}$и $J / \psi \pi^{+} \pi^{-}$masses
- Two regions around of $\psi(2 S), \chi_{c 1}(3872)$ states
- Allow fixing resolution from the channel with high statistics

Measure a branching ratio:
Derived from the data
 $\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872) \phi\right) \times \mathcal{B}\left(\chi_{\mathrm{c} 1}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \phi\right) \times \mathcal{B}\left(\psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}=\frac{\mathrm{N}_{\chi_{\mathrm{c} 1}(3872) \phi}}{\mathrm{N}_{\psi(2 \mathrm{~S}) \phi}} \times \frac{\varepsilon_{\psi(2 \mathrm{~S}) \phi}}{\varepsilon_{\chi_{\mathrm{c} 1}(3872) \phi}}$

Observation of the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872) \phi$ decays

- Observation of the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872) \phi$ decays:
- 154 ± 15 events
- Significance more then $\sim 12 \sigma$
- Seen the non- ϕ contribution
- Normalization channel: 4180 ± 66 events

The $\chi_{\mathrm{c} 1}$ (3872) parameters in the fit are constrained with recent measurements
(JHEP 08 (2020) 123)

$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \phi$$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \phi$
$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}^{+} \mathrm{K}^{-}$ $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$ comb. $\psi(2 S) \phi$ comb. $\mathrm{J} / \psi \pi^{+} \pi^{-} \phi$We comb. $\psi(2 \mathrm{~S}) \mathrm{K}^{+} \mathrm{K}^{-}$
- comb. $\mathrm{J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$

Fit to two-dimensional $J / \psi \pi^{+} \pi^{-} K^{+} K^{-}$and $J / \psi \pi^{+} \pi^{-}$distribution for whole $\mathrm{K}^{+} \mathrm{K}^{-}$region

Significant contribution from the decays not associated with ϕ :
$N_{\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{X}_{\mathrm{c} 1}(3872) \mathrm{K}^{+} \mathrm{K}^{-}}=378 \pm 33>154 \pm 15$

Distribution after background
subtraction
$\mathrm{K}^{+} \mathrm{K}^{-}$spectrum for $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872)\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)_{\mathrm{non}-\phi}$ decays

Non phase-space activity seen in region $\mathrm{K}^{+} \mathrm{K}^{-}>1.1 \mathrm{GeV}$ Possible contribution from the $f_{2}(1270)$ and $f_{2}^{\prime}(1525)$

Similar topology that for $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$
Dominated yields cased by $f_{2}^{\prime}(1525)$ and $f^{0}(980)$
PRD 87 (2013) 072004

Component	LHCb	BES	BaBar
$\phi(1020), \lambda=0$	32.1 ± 0.5	32.1 ± 0.5	32.0 ± 0.5
$\phi(1020),\|\lambda\|=1$	34.6 ± 0.5	34.6 ± 0.5	34.5 ± 0.5
$f_{0}(980)$	12.0 ± 1.8	9.2 ± 1.4	4.8 ± 1.0
$f_{0}(1370)$	1.2 ± 0.3	1.2 ± 0.3	1.3 ± 0.3
$f_{2}^{\prime}(1525), \lambda=0$	9.9 ± 0.7	9.8 ± 0.7	9.5 ± 0.7
$f_{2}^{\prime}(1525),\|\lambda\|=1$	5.1 ± 0.9	5.1 ± 0.9	4.9 ± 0.9
$f_{2}(1040),\|\lambda\|=1$	1.5 ± 0.7	1.5 ± 0.7	1.5 ± 0.7
$\phi(1680),\|\lambda\|=1$	3.4 ± 0.3	3.4 ± 0.3	3.4 ± 0.3
$f_{2}(1750), \lambda=0$	2.6 ± 0.5	2.5 ± 0.5	2.2 ± 0.5
$f_{2}(1750),\|\lambda\|=1$	1.8 ± 1.0	1.8 ± 1.0	1.9 ± 1.0
$f_{2}(1950), \lambda=0$	0.4 ± 0.2	0.4 ± 0.2	0.4 ± 0.2
$f_{2}(1950),\|\lambda\|=1$	1.7 ± 0.5	1.8 ± 0.5	1.8 ± 0.5
Non-resonant S-wave	6.0 ± 1.4	4.7 ± 1.2	8.6 ± 1.7
Interference between S-waves	-5.5	-1.7	-1.1
Total S-wave	13.7	13.4	13.6
-ln \mathcal{L}	29,275	29,275	29,281
$\chi^{2} /$ ndf	$649 / 545$	$653 / 545$	$646 / 545$

$$
B R_{B_{s}^{0} \rightarrow \chi_{c 1}(3872)\left(K^{+} K^{-}\right)_{n o n-\phi}} / B R_{B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi}
$$

Non-extended fit to efficiency corrected background subtracted distribution

- ϕ-signal multiplied to right part of phase space function
- Two-body phase space function from three body decay modified by polynomial (flexible to account for presence of broad resonances)

$$
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{cl} 1}(3872) \phi\right) \times \mathcal{B}\left(\chi_{\mathrm{cl}}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \phi\right) \times \mathcal{B}\left(\psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}=(2.42 \pm 0.23 \pm 0.07) \times 10^{-2}
$$

In agreement with CMS, but more precisely

CMS: $\quad(2.21 \pm 0.29 \pm 0.17) \times 10^{-2}$

PRL 125 (2020) 152001

First measurement:

$$
\begin{aligned}
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{\chi}_{\mathrm{cl}}(3872)\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)_{\text {non- } \phi}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872) \phi\right) \times \mathcal{B}\left(\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)}= & \mathrm{B}^{0} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{~K}^{0} \\
=\quad 1.57 \pm 0.32 \pm 0.12 & \mathrm{~B}^{+} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{~K}^{0} \pi \\
& \mathrm{~B}^{+} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{~K}^{+}
\end{aligned}
$$

$\begin{array}{lllll}0 & 0.02 & 0.04 & 0.06 & 0.08\end{array}$
$\frac{\mathcal{B}\left(\mathrm{b} \rightarrow \chi_{\mathrm{c} 1}(3872)+\mathrm{X}\right) \times \mathcal{B}\left(\chi_{\mathrm{c} 1}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}(\mathrm{b} \rightarrow \psi(2 \mathrm{~S})+\mathrm{X}) \times \mathcal{B}\left(\psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)}$

Study of J/ $/ \psi \phi$ spectrum

- Fit to two-dimensional $J / \psi \pi^{+} \pi^{-} K^{+} K^{-}$and $K^{+} K^{-}$distribution
- Look at background -subtracted distributions

- The $B_{s}^{0} \rightarrow \psi(2 S) \phi$ and $B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi$ contribution vetoed
- No structure in ϕ-sideband
- $\phi^{*}(1850), \phi^{*}(1680) ?, \phi^{*}(2170)$?
- Studied with MC, no peak in J/ $\psi \phi$

Fit to background-subtracted distribution

- S-wave RBW multiplied to phase space function
- Monotonic decreasing three-order polynomial function

X(4740) state?

Mass and width:

$$
\begin{aligned}
m_{\mathrm{X}(4740)} & =4741 \pm 6 \pm 6 \mathrm{MeV} / c^{2} \\
\Gamma_{\mathrm{X}(4740)} & =53 \pm 15 \pm 11 \mathrm{MeV}
\end{aligned}
$$

Mass is close to the expected value for predicted csc̄̄̄ states $\left(\mathrm{J}^{\mathrm{PC}}=2^{++}\right)$

$$
\mathrm{m}_{\mathrm{cs} \overline{\mathrm{c}} \overline{\mathrm{~s}}}=4748 \mathrm{MeV} / \mathrm{c}^{2}
$$

D. Ebert, R. N. Faustov, V. O. Galkin

$$
\text { EPJ C } 58 \text { (2008) } 399
$$

Mass and width are close to $\chi_{\mathrm{c} 1}(4700)$ and $\chi_{\mathrm{c} 1}(4684)$ states parameters:

$$
\begin{array}{lc}
\mathrm{m}_{\chi_{\mathrm{cl}}(4700)}=4694 \pm 4_{-3}^{+15} \mathrm{MeV} / \mathrm{c}^{2} & \\
\Gamma_{\chi_{\mathrm{cl}}(4700)}=87 \pm 8_{-6}^{+16} \mathrm{MeV} & \text { Systematics is quite large for } \\
\mathrm{m}_{\chi_{\mathrm{cl} 1}(4685)}=4684 \pm 7_{-16}^{+13} \mathrm{MeV} / \mathrm{c}^{2} & \chi_{\mathrm{c} 1}(4700) \text { and } \chi_{\mathrm{c} 1}(4684) \\
\text { states }
\end{array}
$$

$$
\Gamma_{\chi_{\mathrm{cl} 1}(4685)}=126 \pm 15_{-41}^{+37} \mathrm{MeV}
$$

Needs to improve systematic
arXiv:2103.01803
P-value:

P-value:

$$
\begin{array}{ll}
\mathrm{p}^{\text {syst }}=0.012 \mathrm{X}(4700)-2.3 \sigma & \mathrm{p}^{\mathrm{w/o} \mathrm{syst}}=8.07 \times 10^{-11} \mathrm{X}(4700)-6.3 \sigma \\
\mathrm{p}^{\text {syst }}=0.0009 \mathrm{X}(4684)-3.1 \sigma & \mathrm{p}^{\mathrm{w} / \mathrm{osyst}}=1.34 \times 10^{-11} \mathrm{X}(4684)-6.6 \sigma
\end{array}
$$

The full amplitude analysis is needed to account for interference effects

More results in $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$decays

Observation of the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*} \overline{\mathrm{~K}}^{* 0}$ decays

First measurement:

$$
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{* 0} \overline{\mathrm{~K}}^{* 0}\right) \times\left(\mathcal{B}\left(\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)\right)^{2}}{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \phi\right) \times \mathcal{B}\left(\psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right) \times \mathcal{B}\left(\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)}=\quad 1.22 \pm 0.03 \pm 0.04
$$

- Large branding fraction for the limited phase space
- Compare with BR for $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \eta^{\prime} \phi$ and $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \eta^{\prime} \eta^{\prime}$ (not yet observed)

More results in $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$decays

- Fit in the narrow $\psi(2 S)$ and ϕ mass region:

$$
3.679<m_{\mathrm{J} / \psi \pi^{+} \pi^{-}}<3.694 \mathrm{GeV} / c^{2}
$$

- Allow use $\psi(2 S)$ mass constraint to B_{s}^{0} mass
- Improve resolution
- Reduce systematic uncertainty
- Systematic dominated by momentum scaling

Most precise single measurements :

$$
m_{\mathrm{B}_{\mathrm{s}}^{0}}=5366.98 \pm 0.07 \pm 0.13 \mathrm{MeV} / c^{2}
$$

LHCb avarage:

$$
m_{\mathrm{B}_{\mathrm{s}}^{0}}^{\mathrm{LHCb}}=5366.94 \pm 0.08 \pm 0.09 \mathrm{MeV} / c^{2}
$$

Summary

- The Run $1+2$ amplitude analysis to $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}^{+}$channels are performed:
- Previous result of Run 1 data are confirmed with high statistics
- Four new state in $\mathrm{J} / \psi \mathrm{K}^{+}$and $\mathrm{J} / \psi \phi$ are observed
- $Z_{c s}(4000)^{+}\left(1^{+}\right)$is observed with high significance and broad $Z_{c s}(4220)$ state is observed
- The $X(4685)\left(1^{+}\right)$and $X(4630)$ states are also observed for the first time
- The study of the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$decays is performed:
- Several new channels are observed and their BR are measured
- $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872) \phi, \mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c} 1}(3872)\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)_{\not,}, \mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*} 0 \overline{\mathrm{~K}}^{* 0}$
- The new structure $\mathrm{X}(4740)$ in the $\mathrm{J} / \psi \phi$ spectrum are observed with
significance $>5 \sigma$
- Precise $\mathrm{B}_{\mathrm{s}}^{0}$ mass measurement

More LHCb results

Strange tetraquark in $\mathrm{D}^{-} \mathrm{K}^{+}$system
PRD 1022020112003

Evidence of structure in $\mathrm{J} / \psi \Lambda$ spectrum arXiv:2012.10380

Four charm tetraquark in $\mathrm{J} / \psi \mathrm{J} / \psi$ system
SciB 65 (2020) 1983

Search for $\mathrm{P}_{\mathrm{c}}(4312)^{+}$in $\Lambda_{\mathrm{b}}^{0} \rightarrow \eta_{\mathrm{c}}(1 \mathrm{~S}) \mathrm{pK}^{-}$decays PRD 102 (2020) 112012

Thank you for attention!

A lot of analyses are ongoing with full LHCb data sample Search for new exotic states are continuing
Stay tuned and look forward for new results at LHCb published papers web page!

Two most important link in this talk: $\mathbf{1 , 2}$

